\( \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\senq}{\mathop{\rm sen^2}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\tgq}{\mathop{\rm tg^2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

12/04/2017

Uma recta giratória (superfície regrada)


Problema: Identificar o conjunto de todos os pontos que se obtêm rodando a recta $z=mx+b$ com $m\neq 0$ contida no plano $y=R$ em torno do eixo $Oz$, para ângulos $\theta \in \left[0;2\pi\right[ $.

Sem comentários:

Enviar um comentário