\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

28/09/2017

As séries de Maclaurin das secantes trigonométrica e hiperbólica
Introdução aos números de Euler

Eu vou começar pela secante trigonométrica.
Sabe-se que \[\sec(x)=\frac{1}{\cos\left(x\right)}\] como a função cosseno é par, então a função secante é par.
(Caro leitor, se isto não é óbvio, recomendo-lhe que vá ler outra coisa)
Notação:     $f^{(N)}(a)$ designa a derivada de ordem $N$ de $f$ no ponto $a$.
Se $f$ é uma função par, então \[f^{(2n+1)}(0)=0,\text{ } \forall n\in\N_0\]


Como $f$ é par, então $f(x)=f(-x)$, logo $f'(x)=-f'(-x)$.
Tomando $x=0$ temos \begin{eqnarray*} {}&{}&{f'(0)=-f'(0)}\\ {\Leftrightarrow}&{}&{2f'(0)=0}\\ {\Leftrightarrow}&{}&{f'(0)=0} \end{eqnarray*} Para $n\in \N_0$, sendo $f$ par, procede-se da mesma forma.
Temos que: \begin{eqnarray*} f^{(2n+1)}(-x)&=&(-1)^{2n+1}f^{(2n+1)}(x)\\ {}&=&{-f^{(2n+1)}(x)} \end{eqnarray*} toma-se $x=0$ e mais uma vez: \begin{eqnarray*} {}&{}&{f^{(2n+1)}(0)=-f^{(2n+1)}(0)}\\ {\Leftrightarrow}&{}&{2f^{(2n+1)}(0)=0}\\ {\Leftrightarrow}&{}&{f^{(2n+1)}(0)=0} \end{eqnarray*}

Isto significa que a expansão em série de MacLaurin da secante será da forma \[ f(x)=\sum\limits_{n = 0}^\infty {\frac{{f^{\left( {2n} \right)} \left( 0 \right)x^{2n} }}{{\left( {2n} \right)!}}} \] Seja $a_n=f^{\left( {2n}\right)}\left( 0 \right)$ onde $f(x)=\sec\left(x\right)$
Como \[\sec(x)\times\cos(x)=1\] (Obviamente... para os valores de $x$ para os quais $\cos(x)\neq 0$ )
Então \[ \left( {\sum\limits_{n = 0}^\infty {\frac{{a_n x^{2n} }}{{\left( {2n} \right)!}}} } \right)\left( {\sum\limits_{n = 0}^\infty {\frac{{\left( { - 1} \right)^n x^{2n} }}{{\left( {2n} \right)!}}} } \right) = 1 \] Pela fórmula da série produto de Cauchy temos que \begin{eqnarray*} {\left( {\sum\limits_{n = 0}^\infty {\frac{{a_n x^{2n} }}{{\left( {2n} \right)!}}} } \right)\left( {\sum\limits_{n = 0}^\infty {\frac{{\left( { - 1} \right)^n x^{2n} }}{{\left( {2n} \right)!}}} } \right)}& = &{\sum\limits_{n = 0}^\infty {\left( {\sum\limits_{l = 0}^n {\frac{{a_l \left( { - 1} \right)^{n - l} }}{{\left( {2l} \right)!\left( {2n - 2l} \right)!}}} } \right)x^{2n} } }\\ {}&=&{\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{\left( {2n} \right)!}}\sum\limits_{l = 0}^n {\frac{{a_l \left( {2n} \right)!\left( { - 1} \right)^{n - l} }}{{\left( {2l} \right)!\left( {2n - 2l} \right)!}}} } \right)x^{2n} } }\\ {}&=&{\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{\left( {2n} \right)!}}\sum\limits_{l = 0}^n {\left[ { \combin{2n}{2l}a_l } \left( { - 1} \right)^{n - l}\right]} } \right)x^{2n} } }\\ \end{eqnarray*} Portanto \[{\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{\left( {2n} \right)!}}\sum\limits_{l = 0}^n {\left[ { \combin{2n}{2l}a_l } \left( { - 1} \right)^{n - l}\right]} } \right)x^{2n} } }=1\] Como $a_0=\sec\left(0\right)=1$ \[{\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{\left( {2n} \right)!}}\sum\limits_{l = 0}^n {\left[ { \combin{2n}{2l}a_l } \left( { - 1} \right)^{n - l}\right]} } \right)x^{2n} } }=0\] então, para cada $n\in\N_1$ \[\sum\limits_{l = 0}^n {\left[ { \combin{2n}{2l}a_l } \left( { - 1} \right)^{n - l}\right]}=0\] \[\Leftrightarrow a_n=\sum\limits_{l = 0}^{n-1} {\left[ { \combin{2n}{2l}a_l } \left( { - 1} \right)^{n - l+1}\right]}\] Fórmula de recorrência que torna mais fácil a dedução dos coeficientes...até sem calculadora!
\begin{eqnarray*} {a_1}&=&{ \combin{2}{0}a_0 \left( { - 1} \right)^{1 - 0+1}=a_0=1}\\ {a_2}&=&{ \combin{4}{0}a_0 \left( { - 1} \right)^{2 - 0+1}+\combin{4}{2}a_1 \left( { - 1} \right)^{2 - 1+1}=-a_0+6a_1=5}\\ {a_3}&=&{ \combin{6}{0}a_0 \left( { - 1} \right)^{3 - 0+1}+\combin{6}{2}a_1 \left( { - 1} \right)^{3 - 1+1}+\combin{6}{4}a_2 \left( { - 1} \right)^{3 - 2+1}=a_0-15a_1+15a_2=1-15+75=61}\\ a_{4}&=&1385\\ a_{5}&=&50521\\ a_{6}&=&2702765\\ {}&{\vdots }&{} \end{eqnarray*} Como \[\ch (x)=\frac{e^x+e^{-x}}{2}=\frac{e^{i\cdot(-i)x}+e^{i\cdot ix}}{2}=\cos(ix)\] então \[\sech (x)=\sec(ix)={\sum\limits_{n = 0}^\infty {\frac{{a_n (ix)^{2n} }}{{\left( {2n} \right)!}}} }={\sum\limits_{n = 0}^\infty {\frac{(-1)^n{a_n x^{2n} }}{{\left( {2n} \right)!}}} }\]

Os números de Euler

Os números de Euler são uma sucessão $(E_n)$ de números inteiros definida pela série de Maclaurin da secante hiperbólica: \[ \sech x=\sum\limits_{n = 0}^\infty \frac{E_n}{n!}x^n \] Então, tendo em conta o que foi feito até agora neste texto:
  • Se $n$ é impar então $E_n=0$
  • Se $n$ é par então $E_n=(-1)^{n/2}{a_{n/2}}$
Uma forma mais simpática de escrever isto será:
  • \[E_{2n+1}=0\]
  • \[E_{2n}=(-1)^{n}{a_{n}}=\sum\limits_{l = 0}^{n-1} {\left[ \combin{2n}{2l}a_l \left( - 1\right)^{1-l}\right]} =-\sum\limits_{l = 0}^{n-1} {\left[ \combin{2n}{2l} E_{2l}\right]}\]
\[\forall n \in \N_0 \]


[ 3 de Abril de 2018]
Abaixo deixo aqui uma lista dos primeiros números de Euler, gerada em Python. Os números de indice impar são zero, portanto omiti-os. \[ \begin{eqnarray*} {E_{0}}&{=}&{1}\\ {E_{2}}&{=}&{1}\\ {E_{4}}&{=}&{5}\\ {E_{6}}&{=}&{61}\\ {E_{8}}&{=}&{1385}\\ {E_{10}}&{=}&{50521}\\ {E_{12}}&{=}&{2702765}\\ {E_{14}}&{=}&{199360981}\\ {E_{16}}&{=}&{19391512145}\\ {E_{18}}&{=}&{2404879675441}\\ {E_{20}}&{=}&{370371188237525}\\ {E_{22}}&{=}&{69348874393137901}\\ {E_{24}}&{=}&{15514534163557086905}\\ {E_{26}}&{=}&{4087072509293123892361}\\ {E_{28}}&{=}&{1252259641403629865468285}\\ {E_{30}}&{=}&{441543893249023104553682821}\\ {E_{32}}&{=}&{177519391579539289436664789665}\\ {E_{34}}&{=}&{80723299235887898062168247453281}\\ {E_{36}}&{=}&{41222060339517702122347079671259045}\\ {E_{38}}&{=}&{23489580527043108252017828576198947741}\\ {E_{40}}&{=}&{14851150718114980017877156781405826684425}\\ {E_{42}}&{=}&{10364622733519612119397957304745185976310201}\\ {E_{44}}&{=}&{7947579422597592703608040510088070619519273805}\\ {E_{46}}&{=}&{6667537516685544977435028474773748197524107684661}\\ {E_{48}}&{=}&{6096278645568542158691685742876843153976539044435185}\\ {E_{50}}&{=}&{6053285248188621896314383785111649088103498225146815121}\\ {E_{52}}&{=}&{6506162486684608847715870634080822983483644236765385576565}\\ {E_{54}}&{=}&{7546659939008739098061432565889736744212240024711699858645581}\\ {E_{56}}&{=}&{9420321896420241204202286237690583227209388852599646009394905945}\\ {E_{58}}&{=}&{12622019251806218719903409237287489255482341061191825594069964920041}\\ {E_{60}}&{=}&{18108911496579230496545807741652158688733487349236314106008095454231325}\\ {E_{62}}&{=}&{27757101702071580597366980908371527449233019594800917578033782766889782501}\\ {E_{64}}&{=}&{45358103330017889174746887871567762366351861519470368881468843837919695760705}\\ {E_{66}}&{=}&{78862842066617894181007207422399904239478162972003768932709757494857167945376961}\\ {E_{68}}&{=}&{145618443801396315007150470094942326661860812858314932986447697768064595488862902085}\\ {E_{70}}&{=}&{285051783223697718732198729556739339504255241778255239879353211106980427546235397447421}\\ {E_{72}}&{=}&{590574720777544365455135032296439571372033016181822954929765972153659805050264501891063465}\\ {E_{74}}&{=}&{1292973664187864170497603235938698754076170519123672606411370597343787035331808195731850937881}\\ {E_{76}}&{=}&{2986928183284576950930743652217140605692922369370680702813812833466898038172015655808960288452845}\\ {E_{78}}&{=}&{7270601714016864143803280651699281851647234288049207905108309583687335688017641546191095009395592341}\\ {E_{80}}&{=}&{18622915758412697044482492303043126011920010194518556063577101095681956123546201442832293837005396878225}\\ {E_{82}}&{=}&{50131049408109796612908693678881009420083336722220539765973596236561571401154699761552253189084809951554801}\\ {E_{84}}&{=}&{141652557597856259916722069410021670405475845492837912390700146845374567994390844977125987675020436380612547605}\\ {E_{86}}&{=}&{419664316404024471322573414069418891818962628391683907039212228549032921853217838146608053808786365440570254969261}\\ {E_{88}}&{=}&{1302159590524046398125858691330818681356757613986610030678095758242404286633729262297123677199743591748006204646868985}\\ {E_{90}}&{=}&{4227240686139909064705589929214593102933845388672369082676644542650248228369590525634078984302153217507945782396923579721}\\ {E_{92}}&{=}&{14343212791976583406133682640578565858579882148843159111106574955509790196812618254848857854461550714631444034921517907250365}\\ {E_{94}}&{=}&{50817990724580425164559757643090736003482435671513413926813239886828210876247074897752122164140484881907534297068189565042330181}\\ {E_{96}}&{=}&{187833293645293026402007579184179892539001444997005361637080870116823642645755601678579681159136078780812233831035373097528077899745}\\ {E_{98}}&{=}&{723653438103385777657187661736782292986259565181067232760712431055015669043224647591792236141452770950810842191949814198134897708964641}\\ {E_{100}}&{=}&{2903528346661097497054603834764435875077553006646158945080492319146997643370625023889353447129967354174648294748510553528692457632980625125} \end{eqnarray*} \]

Sem comentários:

Enviar um comentário