\( \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\H}{\mathbb{H}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

04/06/2018

Raizes quadradas de um número complexo (I).

Seja $z=a+bi$ com $a$ e $b$ reais tais que $b\neq 0$ e $a^2+b^2\neq 0$, e $i$ a unidade imaginária.
As raízes quadradas de $z$ são os números complexos $w=x+yi$ tais que $w^2=z$, ou seja: \begin{eqnarray*} {(x+yi)^2}&=&{a+bi}\\ {\Leftrightarrow x^2-y^2+2xyi}&{=}&{a+bi} \end{eqnarray*} Portanto \[ x^2-y^2=a \wedge 2xy=b\] Sendo $b\neq 0$ temos que nem $x$ nem $y$ são nulos, portanto temos $y=\displaystyle\frac{b}{2x}$ e então \[x^2-y^2=a \Leftrightarrow x^2-\left(\frac{b}{2x}\right)^2=a\Leftrightarrow 4x^4-4ax^2-b^2=0\] que é uma equação biquadrada e portanto: \[x^2=\displaystyle\frac{4a\pm\sqrt{(4a)^2-4\times4\times(-b^2)}}{2\times4}=\displaystyle\frac{a\pm\sqrt{a^2+b^2}}{2}\] Note-se que sendo $b\neq0$ a solução com um sinal $-$ não faz sentido e portanto: \[x=\pm\sqrt{\displaystyle\frac{a+\sqrt{a^2+b^2}}{2}}\] E então \[y=\frac{b}{2x}=\frac{b}{\pm2\sqrt{\displaystyle\frac{a+\sqrt{a^2+b^2}}{2}}}=\pm\frac{b\sqrt{2}}{2\sqrt{a+\sqrt{a^2+b^2}}}\] Ou seja, as raizes quadradas de $z=a+bi$ são complexos da forma \[w=\pm\left(\sqrt{\displaystyle\frac{a+\sqrt{a^2+b^2}}{2}}+\frac{b\sqrt{2}}{2\sqrt{a+\sqrt{a^2+b^2}}}i\right)\] se $b=0$ as raízes são da forma $w=\pm \sqrt{a} $.
Note-se que não podemos dizer que a fórmula se mantém válida se $b=0$ pois, se $a<0$ e $b=0$, \[\ReP{w}=2\sqrt{a+\sqrt{a^2+b^2}}=0\] \\ \[\ImP{w}=\pm\displaystyle\frac{b\sqrt{2}}{2\sqrt{a+\sqrt{a^2+b^2}}}=\frac{0}{0} \]
Exemplos de aplicação:
  • As raízes quadradas de -8+6i são \[w=\pm\left(\sqrt{\displaystyle\frac{-8+\sqrt{8^2+6^2}}{2}}+\frac{6\sqrt{2}}{2\sqrt{-8+\sqrt{8^2+6^2}}}i\right)=\pm(1+3i)\]
  • As raízes quadradas de 3+4i são \[w=\pm\left(\sqrt{\displaystyle\frac{3+\sqrt{3^2+4^2}}{2}}+\frac{4\sqrt{2}}{2\sqrt{3+\sqrt{3^2+4^2}}}i\right)=\pm(2+i)\]
  • As raízes quadradas de 1+i são \[w=\pm\left(\sqrt{\displaystyle\frac{1+\sqrt{1^2+1^2}}{2}}+\frac{1\sqrt{2}}{2\sqrt{1+\sqrt{1^2+1^2}}}i\right)=\pm\left(\sqrt{\frac{1+\sqrt{2}}{2}}+\frac{\sqrt{2}}{2\sqrt{1+\sqrt{2}}}i\right)\] Note-se que estes são os valores de $\sqrt[4]{2}e^{i\frac{\pi}{8}}$ e $\sqrt[4]{2}e^{i\frac{9\pi}{8}}$
  • Para ter valores de $\cos \frac{\pi}{12}$ e $\sen \frac{\pi}{12}$ basta ver qual a raiz quadrada de $e^{i\frac{\pi}{6}}$ que tem afixo no primeiro quadrante, ou seja, com partes real e imaginária positivas. Ora $e^{i\frac{\pi}{6}}=\frac{\sqrt{3}}{2}+\frac{1}{2}i$, logo a raíz que nos interessa é: \begin{eqnarray*} {w}& = &{\sqrt {\frac{{\frac{{\sqrt 3 }}{2} + 1}}{2}} + \frac{{\frac{1}{2}\sqrt 2 }}{{2\sqrt {\frac{{\sqrt 3 }}{2} + 1} }}i }\\ {}&=&{ \sqrt {\frac{{\sqrt 3 + 2}}{4}} + \frac{2}{{4\sqrt {\sqrt 3 + 2} }}i }\\ {}&=&{\frac{{\sqrt {\sqrt 3 + 2} }}{2} + \frac{1}{{2\sqrt {\sqrt 3 + 2} }}i}\\ {}&=&{\frac{{\frac{{\sqrt 6 + \sqrt 2 }}{2}}}{2} + \frac{1}{{2\left( {\frac{{\sqrt 6 + \sqrt 2 }}{2}} \right)}}i}\\ {}&=&{\frac{{\sqrt 6 + \sqrt 2 }}{4} + \frac{{\sqrt 6 - \sqrt 2 }}{4}i} \end{eqnarray*} Que nos indica que \[\cos \left(\frac{\pi}{12}\right)=\frac{\sqrt 6 + \sqrt 2 }{4}\] \[ \sen\left(\frac{\pi}{12}\right)= \frac{\sqrt 6 - \sqrt 2 }{4}\] Foi feito o seguinte cálculo auxiliar: \[ \sqrt {\sqrt 3 + 2} = \sqrt {\sqrt 3 + \frac{3}{2} + \frac{1}{2}} = \sqrt {\sqrt 3 + \left( {\sqrt {\frac{3}{2}} } \right)^2 + \left( {\sqrt {\frac{1}{2}} } \right)^2 } = \sqrt {\left( {\sqrt {\frac{3}{2}} } \right)^2 + 2\sqrt {\frac{3}{2}} \sqrt {\frac{1}{2}} + \left( {\sqrt {\frac{1}{2}} } \right)^2 } = \] \[ = \sqrt {\left( {\sqrt {\frac{3}{2}} + \sqrt {\frac{1}{2}} } \right)^2 } = \sqrt {\frac{3}{2}} + \sqrt {\frac{1}{2}} = \sqrt {\frac{{3 \times 2}}{{2 \times 2}}} + \sqrt {\frac{{1 \times 2}}{{2 \times 2}}} = \frac{{\sqrt 6 + \sqrt 2 }}{2} \]

Sem comentários:

Enviar um comentário