\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

24/11/2019

Uma dedução das fórmulas do movimento rectilíneo uniformemente variado

Está na moda a (errada) filosofia de que as demonstrações só interessam aos matemáticos. Sem provas pregam-se dogmas, e não ciência. Biologia, Física, Geologia, Matemática, Química são ciências e não religiões. Uma formação científica decente deve ser capaz de dar demonstrações aos alunos, sem se tornar maçadora e aborrecida.

Hoje vou partir da definição de "movimento rectilíneo uniformemente variado" e deduzir as equações da velocidade e das posições, sem recorrer explícitamente ao cálculo integral.
[Esta prova ocorreu-me ontem num esclarecimento de dúvidas de Física de 11º... porque a vi quando eu estava no meu ensino secundário]

movimento rectilíneo uniformemente variado (m.r.u.v.) é um movimento rectilíneo em que a aceleração é constante e tem um valor $a$.

Se é constante, a aceleração média é também constante e igual ao mesmo valor $a$, ou seja
\[\frac{\Delta v}{\Delta t} =a \]
Isso significa que se o objecto inicia o movimento no instante $t=0$ com velocidade $v_0$, noutro instante $t$ terá velocidade $v$, cuja fórmula pode ser facilmente deduzida:
\begin{eqnarray*} {\frac{\Delta v}{\Delta t} =a}{\Leftrightarrow}{\frac{v-v_0}{t-0} =a}\\ {}{\Leftrightarrow}{v-v_0=at}\\ {}{\Leftrightarrow}{v=v_0+at} \end{eqnarray*}

Portanto a equação das velocidades é \[v=v_0+at\]
Num gráfico velocidade-tempo, esta velocidade é uma função afim, ou seja, tem o gráfico de uma recta.



A área entre o gráfico da velocidade e o eixo dos "$t$" dá-nos a variação de posição $\Delta x$ (porquê?).

E assim, para deduzirmos a equação do movimento basta recordar e aplicar a fórmula da área do trapézio:
\[A= \frac{B+b}{2}\times h\]
Onde $B$ e $b$ são as bases e $h$ a altura do trapézio.
Portanto \[\Delta x=\frac{(v_0+at)+v_0}{2}\times t=v_0t+\frac{1}{2}at^2\] Assumindo que no instante $t$ o objecto está na posição $x$ e no instante $t=0$ estava na posição $x_0$, temos \[x-x_0=v_0t+\frac{1}{2}at^2\]
Ou seja \[x=x_0+v_0t+\frac{1}{2}at^2\]
Que é a equação do movimento do objecto.