\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

04/09/2018

Um integral à moda de Feynman

O exercício que se segue foi proposto por José Manuel Sacramento no facebook.
A proposta de resolução, é minha!
Problema: calcular

\[ \int\limits_0^{ + \infty } {\frac{{\ln \left( {\displaystyle\frac{{1 + x^{11} }}{{1 + x^3 }}} \right)}}{{\left( {1 + x^2 } \right)\ln x}}dx} \]

Proposta de Resolução: (Vou saltar algumas justificações, falo delas num post futuro)
Considere-se o integral paramétrico: \[ I(t)=\int\limits_0^{ + \infty } {\frac{{\ln \left( {\displaystyle\frac{{1 + x^{t} }}{{1 + x^3 }}} \right)}}{{\left( {1 + x^2 } \right)\ln x}}dx} \] Então, derivando em ordem a $t$, temos \begin{eqnarray*} {I'(t)}&{=}&{\int\limits_0^{ + \infty } {\frac{\partial}{\partial t}\left( \frac{{\ln \left( {\displaystyle\frac{{1 + x^{t} }}{{1 + x^3 }}} \right)}}{{\left( {1 + x^2 } \right)\ln x}}\right)dx}}\\ {}&{=}&{\int\limits_0^{ + \infty } { \frac{x^t}{\left( {1 + x^2 } \right)\left( {1 + x^t } \right)}dx}}\\ {}&=&{\int\limits_0^{ + \infty } { \frac{x^t+1-1}{\left( {1 + x^2 } \right)\left( {1 + x^t } \right)}dx}}\\ {}&=&{\int\limits_0^{ + \infty } { \frac{1}{1 + x^2 }}-\int\limits_0^{ + \infty }{\frac{1}{\left( {1 + x^2 } \right)\left( {1 + x^t } \right)}dx}}\\ {}&=&{\frac{\pi}{2}-\int\limits_0^{ + \infty }{\frac{1}{\left( {1 + x^2 } \right)\left( {1 + x^t } \right)}dx}}\\ \end{eqnarray*}. Fazendo a substituição $y=x^{-1}$ no último integral temos \begin{eqnarray*} {I'(t)}&{=}&{\frac{\pi}{2}-I'(t)}\\ \end{eqnarray*}. Ou seja, \[2I'(t)=\frac{\pi}{2}\] \[\Leftrightarrow I'(t)=\frac{\pi}{4}\] Portanto \[I(t)=\frac{\pi}{4}t+C\] Inspeccionando a definição de $I(t)$ vemos ainda que $I(3)=0$, isso dá-nos $C=-\displaystyle\frac{3\pi}{4}$ ou seja \[I(t)=\frac{\pi}{4}t-\frac{3\pi}{4}\] Assim sendo, \[ \int\limits_0^{ + \infty } {\frac{{\ln \left( {\displaystyle\frac{{1 + x^{11} }}{{1 + x^3 }}} \right)}}{{\left( {1 + x^2 } \right)\ln x}}dx}=I(11)=\frac{\pi}{4}\times11-\frac{3\pi}{4}=\frac{8\pi}{4}=2\pi \]