\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

31/01/2019

Uma mente diferente...

Recentemente, uma explicanda trouxe-me o problema: \[ \left\{ {\begin{array}{l} {u_1 = 3} \\ {u_{n + 1} = u_n + 2n, \text{ se }n > 1} \end{array}} \right. \] Qual o valor de $\displaystyle\sum\limits_{n = 1}^{100} {u_n}$?
Respondi imediatamente que esse problema estava fora do programa da disciplina dela, mas que podia resolvê-lo na boa, e sem calculadora!
Como estava fora de questão recorrer aos meus conhecimentos de equações com diferenças, tive de ser criativo.
\begin{eqnarray*} {u_1}&{=}&{3}\\ {u_2}&{=}&{3+2}\\ {u_3}&{=}&{3+2+4}\\ {u_4}&{=}&{3+2+4+6}\\ {u_5}&{=}&{3+2+4+6+8}\\ {u_6}&{=}&{3+2+4+6+8+10}\\ {...}&{...}&{...}\\ {u_n}&{=}&{3+2\cdot\frac{(n-1)n}{2}=3+(n-1)n} \end{eqnarray*} Justifiquei-lhe o último passo com a fórmula da soma dos primeiros $n$ termos de uma progressão aritmética.
Para o passo sequinte, o cálculo do somatório, tive de ser um pouco mais criativo.
Comecei por escrever \[\sum\limits_{n = 1}^{100} {u_n}=\sum\limits_{n = 1}^{100} {\left(3+(n-1)n\right)}=300+\sum\limits_{n = 1}^{100} {n^2}-5050\] Justifiquei convenientemente os números $300$ e o $5050$, contando a famosa história de Gauss.
Mas para o somatório dos quadrados, não me lembrava da fórmula de cor, embora me apareça regularmente em exercícios de indução. Sabia deduzi-la com equações com diferenças, coisa que eu tinha de evitar porque a explicanda desconhecia.
Mas ao olhar para o papel quadriculado, ocorreu-me a fórmula: \[\sum\limits_{n = 1}^{100} {n^2}=100\times1+99\times 3+98\times 5 + ... + 1 \times (200-1) = \sum\limits_{n = 1}^{100} {(101-n)(2n-1)}\] Consegue percebê-la sem eu partilhar um desenho?


E agora, com este desenho?
Se fizermos $S=\displaystyle\sum\limits_{n = 1}^{100} {n^2}$, a fórmula anterior consegue reescrever-se na forma \[S=-2S+\sum\limits_{n = 1}^{100} {203n}-101\times 100 \] Que nos leva a $3S=1015050$ (número curioso) e portanto $S=338350$.
Logo \[\sum\limits_{n = 1}^{100} {u_n}=300+338350-5050=333600\] Ao que ela respondeu-me: "Percebi, mas não deve ser para resolver assim."
PS: Quando se foi embora, escrevi um programa na calculadora que confirmou a minha solução...

2 comentários:

  1. "Percebi, mas não deve ser para resolver assim."
    Seria interessante ela dizer-te qual a "outra" forma de se resolver. No meu caso não seria tão pedagógico como tu, teria embarcado pela resolução de uma eq. de diferenças.
    Visão interessante e esclarecedora a que apresentas aqui!

    ResponderEliminar
  2. É um exercício típico de recorrências e de equações de diferenças.
    Lá apetecer, apeteceu!
    Mas isto veio de um sítio onde no máximo se dá o método de indução.
    Como ela não me trouxe o enunciado original, eu acredito que numa pergunta anterior veio qualquer coisa para provar por indução, que permitia atacar isto de forma mais imediata.

    ResponderEliminar