Lá depois da meia-noite fiz aquilo que uma pessoa de bom senso não faria: ir para o facebook dar palpites sobre Matemática
Por exemplo, li este problema:
Dados os pontos $M(a,0)$ e $N(0,a)$, determinar $P$ por forma a que o triângulo $MNP$ seja equilátero.
Provavelmente pelo cansaço, vi $N(-a,0)$ em vez do que realmente lá estava e portanto dei uma resposta errada!
(É bem feito para não me armar em guru da Matemática).
Uma resposta óbvia, é determinar $P$ por forma a que $\overline{MP}=\overline{NP}$.
Outra forma, menos óbvia, e que como auto-castigo, vou apresentar, é determinar os (dois) vectores $\vect{n}$ de norma $\overline{MN}\sin 60^0$ , ortogonais a $\vect{MN}$ e somá-los ao ponto $C$, ponto médio do segmento $[MN]$
Bom, mãos à obra:
\[\vect{MN}=N-M=(-a,a)\] Então os vectores perpendiculares a $\vect{MN}$ são da forma $\alpha(1,1)$, com $\alpha \in \R$. Os de norma $1$ são $\pm\displaystyle\frac{(1,1)}{\sqrt{2}}$. e
\[\overline{MN}=\sqrt{(-a)^2+a^2}=|a|\sqrt{2}\]
- Supondo $a>0$ temos:
\[\overline{MN}=a\sqrt{2}\] Assim sendo, temos $\vect{n}=\pm\displaystyle\frac{(1,1)}{\sqrt{2}}\times a\sqrt{2}\times \displaystyle\frac{\sqrt{3}}{2}=\pm\left(\displaystyle\frac{a\sqrt{3}}{2},\displaystyle\frac{a\sqrt{3}}{2}\right)$.
Tal como eu disse, $C$ é o ponto médio de $[MN]$ ou seja \[C=\left(\frac{a+0}{2},\frac{0+a}{2}\right)=\left(\frac{a}{2},\frac{a}{2}\right)\] E finalmente: \[P=C+\vect{n}=\left(\frac{a}{2},\frac{a}{2}\right)\pm\left(\displaystyle\frac{a\sqrt{3}}{2},\displaystyle\frac{a\sqrt{3}}{2}\right)\] Ou seja: \[P=\left(\frac{a-a\sqrt{3}}{2},\frac{a-a\sqrt{3}}{2}\right)\vee P=\left(\frac{a+a\sqrt{3}}{2},\frac{a+a\sqrt{3}}{2}\right)\] - Supondo $a < 0$ temos:
\[\overline{MN}=-a\sqrt{2}\]
...
Agora faça, você o resto e inclua as justificações que faltam. Já cumpri a minha parte do castigo. Agora o castigado será você porque se atreveu a ler isto!
Sem comentários:
Enviar um comentário