\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

01/07/2019

Uma equação com problemas (I)

Há uns meses chegou-me um explicando com o seguinte problema.

Seja $k\in \R \backslash \{0\} $. Calcule um valor de $k$ de modo que:
\[
\int\limits_k^\pi  {\frac{1}{{\left( {2 + \sin ^2 \left( {2x} \right)} \right)\cos ^{ - 1} \left( {2x} \right)}}dx =  - \frac{{\sqrt 2 }}{2}\pi }
\]

Ao resolver a equação percebi que a equação era impossível!
Abaixo (botão) deixo a minha resolução feita nesse dia.


\begin{eqnarray*} {\int\limits_k^\pi {\frac{1}{{\left( {2 + \sin ^2 \left( {2x} \right)} \right)\cos ^{ - 1} \left( {2x} \right)}}dx}}& {=} &{ - \frac{{\sqrt 2 }}{2}\pi }\\ {\Leftrightarrow \int\limits_k^\pi {\frac{{\cos \left( {2x} \right)}}{{2 + \sin ^2 \left( {2x} \right)}}dx}}&{ = }&{ - \frac{{\sqrt 2 }}{2}\pi }\\ {\Leftrightarrow \frac{1}{2}\int\limits_k^\pi {\frac{{\cos \left( {2x} \right)}}{{1 + \left( {\displaystyle\frac{{\sin \left( {2x} \right)}}{{\sqrt 2 }}} \right)^2 }}dx}} &{=}& { - \frac{{\sqrt 2 }}{2}\pi }\\ {\Leftrightarrow \frac{1}{2}\frac{{\sqrt 2 }}{2}\int\limits_k^\pi {\displaystyle\frac{{\displaystyle\frac{2}{{\sqrt 2 }}\cos \left( {2x} \right)}}{{1 + \left( {\displaystyle\frac{{\sin \left( {2x} \right)}}{{\sqrt 2 }}} \right)^2 }}dx}}&{ = }&{ - \frac{{\sqrt 2 }}{2}\pi } \\ {\Leftrightarrow \int\limits_k^\pi {\frac{{\displaystyle\frac{2}{{\sqrt 2 }}\cos \left( {2x} \right)}}{{1 + \left( {\displaystyle\frac{{\sin \left( {2x} \right)}}{{\sqrt 2 }}} \right)^2 }}dx}}&{ = }& { - 2\pi } \\ {\Leftrightarrow - \arctg\left( {\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}} \right)}&{ = }&{ - 2\pi } \\ {\Leftrightarrow \arctg\left( {\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}} \right)}&{ = }&{ 2\pi } \\ \end{eqnarray*} Uma vez que o contradomínio da função arcotangente é $\left] { -\displaystyle \frac{\pi }{2},\displaystyle\frac{\pi }{2}} \right[$, a equação obtida é impossível.
Quero que compreendam que mesmo deslocando o contradomínio do arcotangente por um múltiplo inteiro de $\pi$, a equação original continua a ser impossível, visto que essa constante "desapareceria" no decorrer dos cálculos (nomeadamente depois de aplicação da regra de Barrow).


Escrever \[{\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}}=\tg (2\pi)\] É um erro gravíssimo!!! (e que demonstra sério e grave desconhecimento do que se anda a fazer)!

Mas, para que não fiquem dúvidas na cabeça mais teimosa, vou provar a impossibilidade daquela equação de outra forma.
Considere-se a função: \[ F(k) = \int\limits_k^\pi {\frac{1}{{\left( {2 + \sin ^2 \left( {2x} \right)} \right)\cos ^{ - 1} \left( {2x} \right)}}dx} = - \frac{{\sqrt 2 }}{4}\arctg\left( {\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}} \right) \] Ora, como \[- 1 \le \sin \left( {2k} \right) \le 1 \] então \[\frac{{ - 1}}{{\sqrt 2 }} \le \frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }} \le \frac{1}{{\sqrt 2 }}\] Então isto implica que \[{{ - 1}} \leq \frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }} \leq {1}\] \[\Leftrightarrow - \frac{\pi }{4} \le \arctg\left( {\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}} \right) \le \frac{\pi }{4}\] \[ \Leftrightarrow - \frac{{\pi \sqrt 2 }}{{16}} \le - \frac{{\sqrt 2 }}{4}\arctg\left( {\frac{{\sin \left( {2k} \right)}}{{\sqrt 2 }}} \right) \le \frac{{\pi \sqrt 2 }}{{16}}\] \[ \Leftrightarrow - \frac{{\pi \sqrt 2 }}{{16}} \le F(k) \le \frac{{\pi \sqrt 2 }}{{16}}\] Esta última condição prova que $-\displaystyle\frac{{\sqrt 2 }}{2}\pi$ está fora do contradomínio de $F$, portanto a equação original é impossível.

Numa última nota:
  • Não percebi porque se exige no enunciado que $k\neq 0$.   Faz-me suspeitar que há algo de errado com o enunciado.
  • Eu 'verifiquei' numericamente as minhas afirmações antes de me dar ao trabalho de escrever isto... podia ter erros nos cálculos.
  • Como sempre, se encontrarem gralhas ou incorrecções, podem enviar-me para cpaulof at gmail dot com

Actualizações:
  • 03/07/2019: $\cos^{-1}$ deve ser interpretado como a função secante, e não como a função arco-cosseno, graças aos valores dos limites de integração.
  • 03/07/2019: em vez de $k\in\R\backslash \{0\}$ penso que $k$ deve pertencer a um subconjunto de $\R\backslash \left\{x=\displaystyle\frac{\pi}{4}+\frac{n\pi}{2}, n\in \Z\right\}$, mas não sei. O enunciado não é meu.


    \begin{eqnarray*} {D }&{=}&{ \left\{ {x \in \R:\cos \left( {2x} \right) \ne 0} \right\}}\\ {}&{ = }&{\left\{ {x \in \R:2x \ne \frac{\pi }{2} + n\pi ;n \in \Z} \right\}}\\ {}&{ = }&{ \left\{ {x \in \R:x \ne \frac{\pi }{4} + \frac{{n\pi }}{2};n \in \Z} \right\}} \end{eqnarray*}
  • 09/11/2021: Encontrei uma gralha, mas corrigi... ninguém se deu ao trabalho de me avisar!

Sem comentários:

Enviar um comentário