\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

02/09/2024

Fórmulas de Viéte

 



Recentemente encontrei estas fórmulas na página "Math.magazine" no facebook.
A demostração é simples se recorrermos à identidade de Euler, fórmula de De Moivre e Binómio de Newton: \[ \cos (nx) + i\sin (nx) = e^{nxi} = \left( {\cos x + i\sin x} \right)^n = \sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} i^{n - k} \] Como \[ i = e^{i\frac{\pi }{2}} \] Então \begin{eqnarray*} { \sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} i^{n - k}}&{=}&{\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \left( {e^{i\frac{\pi }{2}} } \right)^{n - k} }\\ {}&{=}&{\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \left( {e^{i\frac{{(n - k)\pi }}{2}} } \right) }\\ {}&{=}&{ \sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \left( {\cos \frac{{(n - k)\pi }}{2} + i\sin \frac{{(n - k)\pi }}{2}} \right)} \\ {}&{=}&{\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \\ \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \cos \frac{{(n - k)\pi }}{2}+i\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \sin \frac{{(n - k)\pi }}{2}} \end{eqnarray*} Assim sendo, tomando as partes reais e imaginárias de cada membro da igualdade, temos \[\cos (nx)=\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \cos \frac{{(n - k)\pi }}{2}\] \[\sin (nx)=\sum\limits_{k = 0}^n {\left( {\begin{array}{c} n \\ k \end{array}} \right)} \left( {\cos x} \right)^k \left( {\sin x} \right)^{n - k} \sin \frac{{(n - k)\pi }}{2}\]
PS: Deixei um documento na secção de material com estas fórmulas, e os desenvolvimentos de $n=2$ até $n=10$, gerados com o Mathematica 14.

Sem comentários:

Enviar um comentário