A expressão geral para a recorrência é \[ F_{n}=C_1\left(\frac{1+\sqrt{5}}{2}\right)^n+C_2\left(\frac{1-\sqrt{5}}{2}\right)^n\]
\[F_{n+2}-F_{n+1}-F_n=0\]
A equação característica associada é
\[r^2-r-1=0\]
Que tem como zeros
\[r=\frac{1\pm\sqrt{5}}{2}\]
Os valores de $C_1$ e $C_2$ dependem dos valores das condições iniciais.Note-se que $\displaystyle\frac{1+\sqrt{5}}{2}=\Phi$ é o número de ouro, que também nos permite escrever a fórmula de outras formas
Condições iniciais | Algumas fórmulas explícitas | Em função de $\Phi$ | $n \in $ |
---|---|---|---|
\[F_0=1\]\[F_1=1\] | \begin{eqnarray*} {F_{n}}&=&{\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1+\sqrt{5}}{2}\right)^n+\left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1-\sqrt{5}}{2}\right)^n}\\ {F_{n}}&=&{\left(\frac{\sqrt{5}}{5}\right)\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]} \end{eqnarray*} | \[F_n=\frac{\Phi^{n+1}+\left(-1\right)^n\Phi^{-n-1}}{\sqrt{5}}\] \[F_n = \frac{{\sqrt 5 }}{5}\left( {\Phi ^{n + 1} + \frac{{\left( { - 1} \right)^n }}{{\Phi ^{n + 1} }}} \right)\] | \[\N_0\] |
\[F_0=0\]\[F_1=1\] | \begin{eqnarray*} {F_{n}}&=&{\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^n}\\ {F_{n}}&=&{\left(\frac{\sqrt{5}}{5}\right)\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]} \end{eqnarray*} | \[F_n=\frac{\Phi^{n}+\left(-1\right)^{n-1}\Phi^{-n}}{\sqrt{5}}\] \[F_n = \frac{{\sqrt 5 }}{5}\left( {\Phi ^{n} + \frac{{\left( { - 1} \right)^{n-1} }}{{\Phi ^{n } }}} \right)\] | \[\N_0\] |
\[F_1=1\]\[F_2=1\] | \begin{eqnarray*} {F_{n}}&=&{\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{\sqrt{5}}{5}\right)\left(\frac{1-\sqrt{5}}{2}\right)^n}\\ {F_{n}}&=&{\left(\frac{\sqrt{5}}{5}\right)\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]} \end{eqnarray*} | \[F_n=\frac{\Phi^{n}+\left(-1\right)^{n-1}\Phi^{-n}}{\sqrt{5}}\] \[F_n = \frac{{\sqrt 5 }}{5}\left( {\Phi ^{n} + \frac{{\left( { - 1} \right)^{n-1} }}{{\Phi ^{n} }}} \right)\] | \[\N_1\] |
\[F_1=0\]\[F_2=1\] | \begin{eqnarray*} {F_{n}}&=&{\left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1+\sqrt{5}}{2}\right)^n+\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1-\sqrt{5}}{2}\right)^n} \end{eqnarray*} | \[F_n=\frac{\Phi^{n-1}+\left(-1\right)^n\Phi^{-n+1}}{\sqrt{5}}\] \[F_n = \frac{{\sqrt 5 }}{5}\left( {\Phi ^{n-1} + \frac{{\left( { - 1} \right)^{n} }}{{\Phi ^{n-1} }}} \right)\] | \[\N_1\] |
Existindo várias fórmulas associadas a números de Fibonacci, é sempre conveniente saber a que versão da sucessão essas fórmulas estão associadas, por forma a evitar erros nos resultados.
Nota
Esta página poderá ser actualizada no futuro.
Sem comentários:
Enviar um comentário