Determinar o valor exacto do integral: \[ \int\limits_{ - 1}^1 {\sqrt {1 + x^2 } dx} \] Exprimir o valor na forma $\sqrt{m}+\arg\sinh{(n)}$, com $m,n\in \N$
\[\sqrt {2}+\arg \sinh \left( 1 \right)\]
Começamos por fazer a substituição $x=\sinh u$ então,
\begin{eqnarray*}
{u}&{=}&{\arg\sinh x}\\
{x}&{=}&{-1\Rightarrow u=\arg\sinh(-1)=-\arg\sinh(1)}\\
{x}&{=}&{1\Rightarrow u=\arg\sinh(1)}
\end{eqnarray*}
e \[
\frac{{dx}}{{du}} = \cosh u
\]
Na restante resolução é também útil recordar a fórmula fundamental das funções hiperbólicas
\[\cosh^2 u - \sinh^2 u = 1 \] que $\cosh u>0$ $\forall u \in \R$
e as fórmulas \[\cosh^2 u=\frac{1+\cosh(2u)}{2}\] \[\sinh (2 u) =2\sinh u \cosh u\] Assim sendo, temos que: \begin{eqnarray} {\int\limits_{ - 1}^1 {\sqrt {1 + x^2 } dx} }&{ =}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\sqrt {1 + \left( {\sinh u} \right)^2 } \cosh udu}}\\ {}&{=}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\cosh ^2 udu} }\\ {}&{=}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\frac{{1 + \cosh \left( {2u} \right)}}{2}du} } \\ {}&{=}&{ \frac{1}{2}\int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {1du} + \frac{1}{4}\int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {2\cosh \left( {2u} \right)du}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {\sinh \left( {2u} \right)} \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {2\sinh \left( u \right)\cosh \left( u \right)} \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {2\sinh \left( u \right)\sqrt {1 + \left( {\sinh u} \right)^2 } } \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{\arg \sinh \left( 1 \right) + \frac{1}{4}\left( {2\sqrt {1 + 1} + 2\sqrt {1 + 1} } \right) }\\ {}&{=}&{ \sqrt {2}+\arg \sinh \left( 1 \right) } \end{eqnarray}
e as fórmulas \[\cosh^2 u=\frac{1+\cosh(2u)}{2}\] \[\sinh (2 u) =2\sinh u \cosh u\] Assim sendo, temos que: \begin{eqnarray} {\int\limits_{ - 1}^1 {\sqrt {1 + x^2 } dx} }&{ =}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\sqrt {1 + \left( {\sinh u} \right)^2 } \cosh udu}}\\ {}&{=}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\cosh ^2 udu} }\\ {}&{=}&{ \int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {\frac{{1 + \cosh \left( {2u} \right)}}{2}du} } \\ {}&{=}&{ \frac{1}{2}\int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {1du} + \frac{1}{4}\int\limits_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)} {2\cosh \left( {2u} \right)du}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {\sinh \left( {2u} \right)} \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {2\sinh \left( u \right)\cosh \left( u \right)} \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{ \arg \sinh \left( 1 \right) + \frac{1}{4}\left[ {2\sinh \left( u \right)\sqrt {1 + \left( {\sinh u} \right)^2 } } \right]_{ - \arg \sinh \left( 1 \right)}^{\arg \sinh \left( 1 \right)}} \\ {}&{=}&{\arg \sinh \left( 1 \right) + \frac{1}{4}\left( {2\sqrt {1 + 1} + 2\sqrt {1 + 1} } \right) }\\ {}&{=}&{ \sqrt {2}+\arg \sinh \left( 1 \right) } \end{eqnarray}
Sem comentários:
Enviar um comentário