(Nota: $\sh$ é uma notação para seno hiperbólico ... também se representa por $\sinh$ )
\[
\frac{3\sqrt 2 - 2\sqrt 3 }{3}
\]
Fazendo a substituição $x=\sh t$ temos,
\begin{eqnarray*}
{t}&{=}&{\arg\sh x}\\
{x}&{=}&{1\Rightarrow t=\argsh(1)}\\
{x}&{=}&{\sqrt 3\Rightarrow t=\argsh(\sqrt 3)}
\end{eqnarray*}
e \[
\frac{{dx}}{{dt}} = \ch t
\]
Portanto
\begin{eqnarray*}
{\int\limits_1^{\sqrt 3 } {\frac{1}{x^2 \sqrt {1 + x^2 } }dx} }&{=}&{\int\limits_{\argsh 1}^{\argsh \sqrt 3 } {\frac{1}{\shq t \sqrt {1 + \shq t } }\ch t dt} }\\
{}&{=}&{\int\limits_{\argsh 1}^{\argsh \sqrt 3 } {\frac{1}{\shq t}dt}}\\
{}&{=}&{\int\limits_{\argsh 1}^{\argsh \sqrt 3 } {\cosechq tdt}}\\
{}&{=}&{\left[-\cotgh t\right]_{\argsh 1}^{\argsh \sqrt 3 }}\\
{}&{=}&{\left[-\frac{\ch t}{\sh t}\right]_{\argsh 1}^{\argsh \sqrt 3 }}\\
{}&{=}&{\left[-\frac{\sqrt {1 + \shq t }}{\sh t}\right]_{\argsh 1}^{\argsh \sqrt 3 }}\\
{}&{=}&{-\frac{2}{\sqrt{3}}+\sqrt{2}}\\
{}&{=}&{\frac{3\sqrt 2 - 2\sqrt 3 }{3}}
\end{eqnarray*}
Fazendo a substituição $x=\tg t$, com $t\in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ temos,
\begin{eqnarray*}
{t}&{=}&{\arctg x}\\
{x}&{=}&{1\Rightarrow t=\frac{\pi}{4}}\\
{x}&{=}&{\sqrt 3\Rightarrow t=\frac{\pi}{3}}
\end{eqnarray*}
e \[
\frac{{dx}}{{dt}} = \sec^2 t
\]
Portanto
\begin{eqnarray*}
{\int\limits_1^{\sqrt 3 } {\frac{1}{x^2 \sqrt {1 + x^2 } }dx} }&{=}&{\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3} } {\frac{1}{\tgq t \sqrt {1 + \tgq t } }\sec^2 t dt} }\\
{}&{=}&{\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3} } {\frac{\sec^2 t}{\senq t \sec^2 t\sec t}dt}}\\
{}&{=}&{\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3} } \frac{1}{\senq t \sec t }dt}\\
{}&{=}&{\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3} } \frac{\cos t}{\senq t }dt}\\
{}&{=}&{\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{3} }{\cotg t}{\cosec t }dt}\\
{}&{=}&{\left[-\cosec t\right]_{\frac{\pi}{4}}^{\frac{\pi}{3} }}\\
{}&{=}&{-\cosec \frac{\pi}{3} + \cosec \frac{\pi}{4}}\\
{}&{=}&{-\frac{2}{\sqrt{3}}+\sqrt{2}}\\
{}&{=}&{\frac{3\sqrt 2 - 2\sqrt 3 }{3}}
\end{eqnarray*}
Sem comentários:
Enviar um comentário