\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

28/07/2017

Da equação dos osciladores harmónicos à exponencial complexa (Versão II)

Esta dedução é uma modificação da anterior numa tentativa de a simplificar e a tornar mais acessível ao máximo de pessoas.
Sejam $A>0$, $\omega>0$ e $\varphi \in [0,2\pi[ $. Um oscilador harmónico é um sistema constituído por um ponto que se desloca numa recta numérica em determinado intervalo de tempo $I$, de tal forma que a respectiva abcissa é dada por uma lei da forma \[x(t)=A \cos (\omega t+ \varphi)\] para cada $t\in I$
Derivando em ordem a $t$, temos \[ \dot x=-A\omega \sen (\omega t + \varphi) \] e consequentemente \[ \ddot x=-A\omega^2 \cos (\omega t + \varphi)=-\omega^2 x \] Portanto, $x(t)= A \cos (\omega t+ \varphi)$ é uma solução da equação diferencial \[ \ddot x=-\omega^2 x \] Na verdade, $x(t)= \mathcal{A} \cos (\omega t+ \phi)$ com $\mathcal{A}>0$ e $\phi \in [0,2\pi[ $ arbitrários, é uma expressão geral para todas as soluções da equação \[ \ddot x=-\omega^2 x \]
Considere-se agora a função \[x(t)=e^{at}\], com $a \in \R \backslash \{0\} $
Derivando em ordem a $t$ , temos \[ \dot x=ae^{at} \] e consequentemente \[ \ddot x=a^2e^{at}=a^2 x \] Portanto, $x(t)=e^{at}$ é uma solução da equação diferencial \[ \ddot x=a^2 x \] Compare-se agora as equações \[ \ddot x=-\omega^2 x \] e \[ \ddot x=a^2 x \] E observe-se que estas equações são a mesma se tivermos em conta que $a=i\omega$ onde $i$ é a unidade imaginária, (portanto $i^2=-1$).
Assim sendo, devem existir um $\mathcal{A}$ e um $\phi$ que tornam verdadeira a igualdade \[\label{eqII1}\tag{1} e^{i\omega t}=\mathcal{A} \cos (\omega t+ \phi) \] para todo o $t\in \R$.
Em particular, se $t=0$ temos \[\label{eqII2}\tag{2} 1=\mathcal{A} \cos (\phi) \] Por outro lado, se substituirmos $t$ por $(-t)$ em $(\ref{eqII1})$ temos \[\label{eqII3}\tag{3} e^{-i\omega t}=\mathcal{A} \cos (-\omega t+ \phi) \] para todo o $t\in \R$.
Somando termo a termo as equações ($\ref{eqII1}$) e ($\ref{eqII3}$), e obtemos \[\label{eqII4}\tag{4}{ e^{i\omega t}+ e^{-i\omega t} }= \mathcal{A}\left(\cos (\omega t+ \phi)+\cos (-\omega t+ \phi)\right)\] No meu tempo, no secundário, dava-se a fórmula \[ \cos (\alpha)+\cos(\beta)=2 \cos \left(\frac{\alpha+\beta}{2}\right)\cos \left(\frac{\alpha-\beta}{2}\right)\]
Utilizando esta fórmula, em (\ref{eqII4}) obtemos \[\label{eqII5}\tag{5}{ e^{i\omega t}+ e^{-i\omega t} }= 2\mathcal{A}\left(\cos ( \phi)\cos (\omega t)\right)\] mas atendendo a $(\ref{eqII2})$ \[\label{eqII6}\tag{6}{ e^{i\omega t}+ e^{-i\omega t} }= 2\cos \left(\omega t\right)\] que é equivalente a \[\label{eqIICosseno}\tag{7}\frac{ e^{i\omega t}+ e^{-i\omega t} }{2} = \cos(\omega t)\] Derivando agora cada membro da equação em ordem a $t$ temos \[i\omega\times\frac{ e^{i\omega t}- e^{-i\omega t} }{2} = -\omega \sen(\omega t)\] que é equivalente a \[\label{eqIISeno}\tag{8}\frac{ e^{i\omega t}- e^{-i\omega t} }{2} = i\sen(\omega t)\] Somando termo a termo as equações (\ref{eqIICosseno}) e (\ref{eqIISeno}) obtemos \[ e^{i\omega t}=\cos(\omega t)+i\sen(\omega t)\] Finalmente, fazendo $\theta=\omega t$ obtemos
\[ e^{i\theta}=\cos\theta+i\sen\theta\]

Da equação dos osciladores harmónicos à exponencial complexa (Versão I)

No blog CarlosPaulices no século XXI mostrei como cheguei à exponencial complexa a partir de uma equação diferencial de primeira ordem.
Agora, que o (novo) programa de Matemática A 12º (ensino secundário, Portugal), inclui osciladores harmónicos, sugiro outra forma de o fazer.
Actualização: Existe uma versão diferente desta dedução aqui, neste mesmo blog
Sejam $A>0$, $\omega>0$ e $\varphi \in [0,2\pi[ $. Um oscilador harmónico é um sistema constituído por um ponto que se desloca numa recta numérica em determinado intervalo de tempo $I$, de tal forma que a respectiva abcissa é dada por uma função da forma \[x(t)=A \cos (\omega t+ \varphi)\] para cada $t\in I$
Derivando em ordem a $t$ (neste blog utilizarei $ \dot x $ para designar a derivada de $x$ em ordem a $t$), temos \[ \dot x=-A\omega \sen (\omega t + \varphi) \] e consequentemente \[ \ddot x=-A\omega^2 \cos (\omega t + \varphi)=-\omega^2 x \] Portanto, $x(t)= A \cos (\omega t+ \varphi)$ é uma solução da equação diferencial \[ \ddot x=-\omega^2 x \] Na verdade, $x(t)= \mathcal{A} \cos (\omega t+ \phi)$ com $\mathcal{A}>0$ e $\phi \in [0,2\pi[ $ arbitrários, é uma expressão geral para todas as soluções da equação \[ \ddot x=-\omega^2 x \]
Considere-se agora a função \[x(t)=e^{at}\], com $a \in \R \backslash \{0\} $ Derivando em ordem a $t$ , temos \[ \dot x=ae^{at} \] e consequentemente \[ \ddot x=a^2e^{at} \] Portanto, $x(t)=e^{at}$ é uma solução da equação diferencial \[ \ddot x=a^2 x \] Facilmente se reconhece que $x(t)=e^{-at}$ também é solução da equação, e ainda que qualquer combinação linear destas duas soluções também é solução.
Na verdade, a solução geral desta equação é \[x(t)=\alpha e^{at}+\beta e^{-at}\]
Compare-se agora as equações \[ \ddot x=-\omega^2 x \] e \[ \ddot x=a^2 x \] Observe-se que estas equações são a mesma se tivermos em conta que $a=i\omega$ onde $i$ é a unidade imaginária, (portanto $i^2=-1$).
Se admitirmos a validade da segunda solução geral, para valores de $a$ imaginários puros , então temos que \[\label{eq1}\tag{1}\alpha e^{i\omega t}+\beta e^{-i\omega t}=\mathcal{A} \cos (\omega t+ \phi) \] para todo o $t\in \R$.
Derivando ambos os termos da igualdade temos \[\label{eq2}\tag{2}i\omega\left(\alpha e^{i\omega t}-\beta e^{-i\omega t}\right)=-\omega\mathcal{A} \sen (\omega t+ \phi) \] Tomando $t=0$ nas equações ($\ref{eq1}$) e ($\ref{eq2}$), e obtemos \[ \left\{ {\begin{array}{c} {\alpha + \beta = \mathcal{A}\cos \phi } \\ {\alpha - \beta = i\mathcal{A}\sen \phi } \end{array}} \right. \] Que se resolve facilmente em ordem a $\alpha$ e $\beta$ , obtendo \[ \left\{ {\begin{array}{c} {\alpha = \displaystyle\frac{\mathcal{A}}{2}\left( {\cos \phi + i\sen \phi } \right)} \\ {\beta = \displaystyle\frac{\mathcal{A}}{2}\left( {\cos \phi - i\sen \phi } \right)} \end{array}} \right. \] Substituindo em (\ref{eq1}) obtemos \[\frac{\mathcal{A}}{2}\left( {\cos \phi + i\sen \phi } \right) e^{i\omega t}+\frac{\mathcal{A}}{2}\left( {\cos \phi - i\sen \phi } \right) e^{-i\omega t}=\mathcal{A} \cos (\omega t+ \phi) \] \[ \Leftrightarrow \] \[\label{eq3}\tag{3}\frac{\left( {\cos \phi + i\sen \phi } \right)}{2} e^{i\omega t}+\frac{\left( {\cos \phi - i\sen \phi } \right)}{2} e^{-i\omega t}= \cos (\omega t+ \phi) \] Nesta equação, podemos tomar $\phi=0$ e obtemos \[\label{eqCosseno}\tag{4}\frac{ e^{i\omega t}+ e^{-i\omega t} }{2} = \cos(\omega t)\] Derivando cada membro da equação em ordem a $t$ temos \[i\omega\times\frac{ e^{i\omega t}- e^{-i\omega t} }{2} = -\omega \sen(\omega t)\] que é equivalente a \[\label{eqSeno}\tag{5}\frac{ e^{i\omega t}- e^{-i\omega t} }{2} = i\sen(\omega t)\] Somando termo a termo as equações (\ref{eqCosseno}) e (\ref{eqSeno}) obtemos \[ e^{i\omega t}=\cos(\omega t)+i\sen(\omega t)\] Finalmente, fazendo $\theta=\omega t$ obtemos
\[ e^{i\theta}=\cos\theta+i\sen\theta\]

10/07/2017

Sistema não linear (I)
Um sistema com somas de potências de desconhecidos

Problema: Se \begin{eqnarray*} {a+b+c}&{=}&{2}\\ {a^2+b^2+c^2}&{=}&{6}\\ {a^3+b^3+c^3}&{=}&{8} \end{eqnarray*} então $a^4+b^4+c^4=?$
(Nota do autor do blog: há várias resoluções possíveis para isto... como tal, peço uma que explicite todos os possíveis valores para $a$, $b$ e $c$, e só pelo gozo... não resolva o sistema por substituição!)

O problema original foi-me sugerido por Barbara Fernandes via facebook e inicialmente foi proposto no grupo do facebook Math: An Integral Part of Happiness, caso contrário, eu não tocaria nele.

05/07/2017

Um inteiro às fatias


Problema: Seja $a_n=2-\displaystyle\frac{1}{n^2+\sqrt{n^4+\frac{1}{4}}}$, $n=1,2,...$ .
Mostre que $\sqrt{a_1}+\sqrt{a_2}+...+\sqrt{a_{119}}$ é um inteiro.

Problema proposto por Américo Tavares no facebook, no dia 4 de Julho de 2017.